On Some Applications of the Ag Inequality in Information Theory
نویسنده
چکیده
Recently, S.S. Dragomir used the concavity property of the log mapping and the weighted arithmetic mean-geometric mean inequality to develop new inequalities that were then applied to Information Theory. Here we extend these inequalities and their applications.
منابع مشابه
On the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملOn Hadamard and Fej'{e}r-Hadamard inequalities for Caputo $small{k}$-fractional derivatives
In this paper we will prove certain Hadamard and Fejer-Hadamard inequalities for the functions whose nth derivatives are convex by using Caputo k-fractional derivatives. These results have some relationship with inequalities for Caputo fractional derivatives.
متن کاملOn generalized Hermite-Hadamard inequality for generalized convex function
In this paper, a new inequality for generalized convex functions which is related to the left side of generalized Hermite-Hadamard type inequality is obtained. Some applications for some generalized special means are also given.
متن کاملSome new results using integration of arbitrary order
In this paper, we present recent results in integral inequality theory. Our results are based on thefractional integration in the sense of Riemann-Liouville
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کامل